TS-SERIES

TS 75 TriboScope®

TS 75 TriboScope

The next generation nanomechanical test instrument interfaced to your AFM

The **TS 75** is a fully integrated AFM attachment surpassing the lower limit of traditional nanomechanical testing. The increased performance and testing speed of the **TS 75** comfortably establishes itself as the next generation of nanomechanical testing devices, allowing researchers to:

- Obtain quantitative mechanical properties
- Reliably test softer materials
- Accurately test smaller volumes of material
- Achieve a faster sample throughput

In-situ SPM imaging

The *in-situ* SPM imaging capability of the **TS 75** is critical for precise test placement and microstructure identification. The *in-situ* images are obtained by raster scanning the indenter probe over the sample surface and can be used to reliably place a test within 10 nm of the desired testing location. This technique allows for effortless pre- and post-test topographical imaging without the need to reposition an auxiliary imaging instrument over the nanoscale testing site. The force and displacement results acquired during the test, in conjunction with the *in-situ* imaging* capability, offer an unparalleled wealth of information concerning the material deformation behavior and mechanical properties of the material.

Unprecedented performance

The TS 75 nanomechanical test instrument is driven by the Digital TriboScope[®] Controller, providing unsurpassed performance and industry-leading sensitivity. The Digital TriboScope Controller boasts a sub 30 nN force noise floor and ~80X faster feedback control than the standard controller. The compact design of the Hysitron capacitive transducer* allows it to be interfaced to most commercially available AFM's via a simple, temporary modification. The Hysitron transducer replaces the AFM detector assembly and provides topographic feedback for imaging. Utilizing the same indenter probe to obtain in-situ SPM images as to perform the nanoindentation experiment guarantees quantitative and repeatable data. Additionally, the transducer utilizes a rigid indenter probe that makes the quantification of the force and displacement measurements more reliable than those made with a cantileverbased probe system, which intrinsically introduces many uncertainties into the measurement.

The **TS 75** also supports the NEW **RAPIDprobe**TM transducer, which provides further increased sensitivity, a higher mechanical bandwidth, and 10x faster SPM imaging than the standard capacitive transducer. The **TS 75** is the highest performing nanomechanical test instrument on the market today.

Quantitative 30 x 30 µm modulus map of fiber-epoxy composite using **RAPIDprobe** transducer.

Available testing modes

Standard

- Quasistatic nanoindentation Measure Young's modulus, hardness, fracture toughness and other mechanical properties via indentation
- **Digital TriboScope Controller** DSP embedded controller featuring a sub 30 nN force noise floor and an enhanced digital feedback routine
- ScanningWearTM Observe and quantify wear volumes and wear rates using *in-situ* imaging capability
- **SPM imaging** *In-situ* imaging using the indenter tip provides nanometer precision positioning and SPM topography

Upgrade options

- nanoDMA[®] Investigate time-dependent properties of materials using a dynamic testing technique designed for polymers and biomaterials
- **Modulus Mapping**TM Quantitatively map the storage and loss stiffness and moduli over an area from a single SPM scan
- Feedback control Operate in closed loop load or displacement control to allow testing techniques such as creep and stress relaxation
- Scratch testing Quantify scratch resistance, critical delamination forces, friction coefficients and more with simultaneous normal and lateral force and displacement monitoring
- Automated TriboScope[®] Automated indentation using predetermined patterns or ClickMode[™] allows faster data collection with less operator time
- **Thermal control** Heating or heating/cooling stages can be added for investigation of mechanical properties at nonambient temperatures
- **RAPIDprobe transducer** MEMS actuation technology specifically designed for ultra-low load nanoindentation and provides 10x faster SPM imaging than standard capacitive transducer

Highlights

- **Digital TriboScope Controller** offering a <30 nN force noise floor and ~80x faster digital feedback control than previous generation
- Stability of the Hysitron capacitive transducer design minimizes set-up time and the necessity of specialized lab environments
- *In-situ* imaging provides nanometer precision positioning and the convenience of SPM topography
- User-friendly, Windows[®]-based software for test design and analysis
- Real-time data display and automated analysis routines yield results in minutes
- Numerous tip geometries available to meet the demands of the various test types available on the **TS 75**
- **RAPIDprobe** MEMS actuation technology compatible

Transducer specifications

- Load Resolution: <1 nN Noise Floor (standard transducer) : <30 nN
- Displacement Resolution: 0.0004 nm Noise Floor: 0.2 nm Drift: <0.05 nm/sec

Deformation transients (caused by dislocation burst activity) are easily detected in this displacement controlled force vs. displacement curve for Al(100).

*Covered under US patents: 5,553,486; 5,576,483; 5,661,235; 5,869,751; 6,026,677; 7,107,694

9625 WEST 76TH ST. MINNEAPOLIS, MN 55344 TEL: 1-952-835-6366 FAX: 1-952-835-6166 WWW.HYSITRON.COM